

Engineered Wetlands for Treating Petroleum Hydrocarbon-Contaminated Water

Brian Davis, Ph.D. Scott Wallace, PE

Casper Refinery Site

- Operated 1912 to 1991
- 37,000 m³ of LNAPL recovered to date
- Extensive smear zone due to changing water table elevation
- 50 to 100 years to remediate site
- High mountain west: -35°C ____

LNAPL Distribution

Treatment Needs

- Influent benzene ~ 1.5 mg/L
- Effluent benzene < 0.5 mg/L due to RCRA requirements
- Final benzene < 0.05 mg/L to meet permit limit
- Final iron < 2 mg/L
- Operate at -35°C
- Pilot system operated to demonstrate concept, develop removal rates

Pilot Wetland System

- 4 cells
- Vertical upward flow
- With and without aeration
- With and without wetland sod

Pilot Unit Results

k_A , m/yr, based on 3 TIS

	Aeration		No Aeration	
Compound	Wetland Mulch	No Mulch	Wetland Mulch	No Mulch
Benzene	518	456	317	256
BTEX	356	311	257	244
ТРН	1,058	965	725	579
MTBE	64	60	35	22

Pilot Results: Aerated vs. Non-aerated

Area: 4 ha \rightarrow 1.3 ha

Cascade Aerator

- Oxidize Fe²⁺ to Fe³⁺
- Benzene air stripping (1.5→0.5 mg/l at 3,000 m³/day)

 Option to add second cascade for total capacity of 6,000 m³/day

Surface Flow Wetland

- Iron removal by sedimentation
- Deep zones for sludge removal

Water Level Control

Iron Removal Wetlands

Surface Flow Wetland Iron Removal

Subsurface Flow Wetlands

Hydraulically pass 8.3 m³/min

SSF Wetland Air Distribution

SSF Wetland Construction

SSF Wetland Construction

Treatment Wetland Performance

Compound	Wetland Influent	Wetland Effluent
Benzene, mg/L	0.17	Non-detect (0.01)
BTEX, mg/L	0.47	Non-detect (0.01)
GRO, mg/L	2.02	Non-detect (0.05)

Compound	k _A , m/yr	
Benzene	~ 240	_
BTEX	~ 350	k _A based on 3 TIS
GRO	~ 325	

Approaching Design Flow

Flow (m^3/day)

Date

Effluent Iron Concentrations

Total Iron (mg.L)

Benzene Data: 2004 - 2006

Benzene (mg:L)

Cost Savings to BP: Significant

Evapotranspiration and Engineered Wetland Design in Arid Climates

- Evapotranspiration (ET) is an important design parameter in arid climates
- The energy balance method can be used to calculate water losses due to ET

Energy Inputs – Energy Outputs = Change in Energy Storage (Δ)

 $[R_{N} + U_{in} + G] - [\lambda \rho ET \pm E_{loss} + U_{out}] = \Delta$ (MJ/m²·d)

The Penman Equation

The Penman Equation is used to calculate
 ET

 $\lambda ET = \Phi(R_N - G) + (1 - \Phi) \lambda K_e[P_w^{sat}(T) - P_w^{sat}(T_{dp})]$

λ is the volumetric latent heat of water vaporization Φ is the "Penman Estimator" R_N is net solar radiation G is conductive heat transfer to ground K_e is the water vapor mass transfer coefficient (m/day·kPa) P_w^{sat} is saturation water vapor pressure T is temperature (dp = dew point)

Abu Dhabi design: ET effects

	ET (m/day)	Volume of water lost to ET (m ³ /day)	% of water lost from wetland
Summer	0.0162	19.44	39
Winter	0.0021	2.56	5

Summer:high temperature, low RHWinter:higher RH

Conclusions

- Aeration + wetland sod improved BTEX removal
- Cascade aerator + FWS wetlands
 effective in iron removal
- Full-scale system has produced nondetect effluent concentrations since May 2003
- BTEX k_A pilot: 356 m/yr (3 TIS)
- BTEX k_A full scale: 350 m/yr (3 TIS)

Questions?

